Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

12-Methoxy-15-(1-pyrrolidino)podocarpa-8,11,13-triene-15-one

Ray J. Butcher,* Oladapo Bakare and Nicole J. John

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail:
raymond.butcher@nrl.navy.mil

Key indicators

Single-crystal X-ray study
$T=93 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.035$
$w R$ factor $=0.091$
Data-to-parameter ratio $=11.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]At 93 K , the five-membered pyrrolidine ring of the title compound [systematic name: 6-methoxy-1,4a-dimethyl1,2,3,4,4a, $9,10,10 \mathrm{a}$-octahydrophenanthren-1-yl)(pyrrolidin-1yl)methanone], $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{2}$, has an envelope geometry with one of the $\beta \mathrm{C}$ atoms at the flap position, displaced by 0.610 (3) \AA from the plane defined by the other four atoms. There is a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involving the carbonyl O atom

Comment

As part of our anti-inflammatory and anticancer discovery program, we are exploring the derivatization of the C-4 carboxyl group of podocarpic acid in order to design new molecules that can modulate the lipoxygenase and cyclooxygenase pathways. The title pyrrolidinyl derivative, 12-methoxy-15-(1-pyrrolidino)podocarpa-8,11,13-triene-15-one, (I), was synthesized as one of a series of amide derivatives under investigation. In this paper, we present the X-ray crystallograpic analysis of (I) as a continuation of our previous studies (Bakare et al., 2005.)

(I)

Selected bond distances and angles for (I) are listed in Table 1. The overall molecular geometry, with the atomnumbering scheme, is illustrated in Fig. 1. The geometric

View of the molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are represented by circles of arbitrary size.

Figure 2
The molecular packing of (I), viewed along the b axis. Dashed lines indicate hydrogen bonds.
parameters of this derivative are similar to those observed previously (Bakare et al., 2005). As previously reported (Couldwell et al., 1985; Mondal et al., 2003), ring A adopts the usual chair conformation, ring B is observed in the half-chair conformation and ring C is a planar aromatic ring. Since this compound was synthesized from natural podocarpic acid and the stereocenters were intact during the reactions, the stereochemistry of the compound is as shown. The heterocyclic pyrrrolidinyl ring, defined by atoms N/C19-C22, has an envelope geometry with atom C 21 at the flap position, displaced by 0.610 (3) \AA from the plane defined by atoms $\mathrm{N} /$ $\mathrm{C} 19 / \mathrm{C} 20 / \mathrm{C} 22$. There is a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond between C14 and O1 (Table 2).

Experimental

To sodium hydride ($\mathrm{NaH}, 100 \mathrm{mg}, 4.16 \mathrm{mmol}$) was added a solution of 12-methoxypodocarpa-8,11,13-trien-15-oic acid ($537 \mathrm{mg}, 1.86 \mathrm{mmol}$) in dry benzene (13 ml). The resulting mixture was stirred for 30 min , after which oxalyl chloride (2 ml) was slowly added and stirring continued for an additional 1 h . The reaction mixture was filtered and the residue concentrated in vacuo to give a yellow oil (12-Omethylpodocarpoyl chloride, not analyzed). Dry benzene (5 ml) was added to the residue and the solvent removed again in vacuo. The acid chloride was added slowly to a stirred solution of pyrrolidine (in excess) in dry benzene (273 K). The mixture was then allowed to warm to room temperature and stirred for 24 h before being filtered. The volatiles were removed in vacuo and the residue treated with hexane to give a white solid, which was recrystallized from a solvent mixture of ethanol and distilled water ($3: 1 \mathrm{v} / \mathrm{v}$) (m.p. $387-389 \mathrm{~K}$). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 1.19(3 \mathrm{H}, s), 1.32(3 \mathrm{H}, s), 1.85(2 \mathrm{H}, b s), 1.95(2 \mathrm{H}, b s)$, 3.6. $(4 \mathrm{H}, b m), 3.80(3 \mathrm{H}, s), 6.65(1 \mathrm{H}, d d), 6.80(2 \mathrm{H}, d), 7.0(1 \mathrm{H}, d d)$. EIMS: $m / s 341\left(M^{+}\right), 270,228,161$.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{2}$	Mo $K \alpha$ radiation
$M_{r}=341.48$	Cell parameters from 5585
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$	\quad reflections
$a=9.2758(18) \AA$	$\theta=2.6-28.0^{\circ}$
$b=14.886(3) \AA$	$\mu=0.08 \mathrm{~mm}^{-1}$
$c=13.785(3) \AA$	$T=93(2) \mathrm{K}$
$V=1903.5(7) \AA$	Chunk, colorless
$Z=4$	$0.75 \times 0.45 \times 0.25 \mathrm{~mm}$
$D_{x}=1.192 \mathrm{Mg} \mathrm{m}^{-3}$	

Data collection

Bruker SMART 1K CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.626, T_{\text {max }}=1.000$
14559 measured reflections

2585 independent reflections
2279 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.053$
$\theta_{\text {max }}=28.1^{\circ}$
$h=-12 \rightarrow 11$
$k=-19 \rightarrow 19$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0484 P)^{2}\right. \\
& \quad+0.2838 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.091$
$S=1.05$
2585 reflections
226 parameters
H -atom parameters constrained

Table 1

Selected geometric parameters $\left(\AA,^{\circ}\right)$.

O1-C15	$1.234(2)$	$\mathrm{N}-\mathrm{C} 22$	$1.477(2)$
$\mathrm{O} 2-\mathrm{C} 12$	$1.374(2)$	$\mathrm{C} 19-\mathrm{C} 20$	$1.531(2)$
O2-C18	$1.423(2)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.519(3)$
N-C15	$1.361(2)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.522(3)$
$\mathrm{N}-\mathrm{C} 19$	$1.477(2)$		
			$122.82(15)$
C15-N-C19	$130.98(15)$	$\mathrm{N}-\mathrm{C} 15-\mathrm{C} 4$	$103.16(14)$
C15-N-C22	$117.05(15)$	$\mathrm{N}-\mathrm{C} 19-\mathrm{C} 20$	$103.84(14)$
C19-N-C22	$110.91(14)$	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 19$	$101.91(15)$
O1-C15-N	$118.53(16)$	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22$	$103.34(16)$
$\mathrm{O} 1-\mathrm{C} 15-\mathrm{C} 4$	$118.65(16)$	$\mathrm{N}-\mathrm{C} 22-\mathrm{C} 21$	
			$36.00(19)$
C19-C20-C21-C22	$-40.9(2)$	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{C} 22-\mathrm{N}$	
$\mathrm{C} 19-\mathrm{N}-\mathrm{C} 22-\mathrm{C} 21$	$-18.3(2)$		

Table 2
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 14-\mathrm{H} 14 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.95	2.44	$3.377(2)$	169
Symmetry code: (i) $-x+\frac{3}{2},-y+2, z+\frac{1}{2}$.				

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with $\mathrm{C}-$ H distances of $0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$, but each group was allowed to rotate freely about its $\mathrm{C}-\mathrm{C}$ bond. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.95-1.00 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2001; data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge Howard University New Faculty fund for financial support.

References

Bakare, O., John, N., Butcher, R. J. \& Zalkow, L. H. (2005). Acta Cryst. E61, o3791-o3793.

organic papers

Bruker (2001). SMART-NT (Version 5.624) and SAINT-NT (Version 6.04). Bruker AXS Inc., Madison, Wisconsin, USA
Couldwell, M. C., Smith R. A. J. \& Simpson, J. (1985). Acta Cryst. C41, 983985.

Mondal, S., Mukherjee, M., Roy, A. \& Mukherjee, D. (2003). Acta Cryst. C59, o132-o134.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997a). SHELXL97. University of Göttingen, Germany. Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc, Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

